A Numerical Algorithm for Solving Advection-Diffusion Equation with Constant and Variable Coefficients
نویسنده
چکیده
Abstarct: Advection-diffusion equation with constant and variable coefficients has a wide range of practical and industrial applications. Due to the importance of advection-diffusion equation the present paper, solves and analyzes these problems using a new finite difference equation as well as a numerical scheme. The developed scheme is based on a mathematical combination between Siemieniuch and Gradwell approximation for time and Dehghan's approximation for spatial variable. In the proposed scheme a special discretization for the spatial variable is made in such away that when applying the finite difference equation at any time level (j + 1) two nodes from both ends of the domain are left. After that the unknowns at the two nodes adjacent to the boundaries are obtained from the interpolation technique. The results are compared with some available analytical solutions and show a good agreement.
منابع مشابه
Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملTwo-dimensional advection-dispersion equation with depth- dependent variable source concentration
The present work solves two-dimensional Advection-Dispersion Equation (ADE) in a semi-infinite domain. A variable source concentration is regarded as the monotonic decreasing function at the source boundary (x=0). Depth-dependent variables are considered to incorporate real life situations in this modeling study, with zero flux condition assumed to occur at the exit boundary of the domain, i.e....
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملTwo-dimensional advection-dispersion equation with depth- dependent variable source concentration
The present work solves two-dimensional Advection-Dispersion Equation (ADE) in a semi-infinite domain. A variable source concentration is regarded as the monotonic decreasing function at the source boundary (x=0). Depth-dependent variables are considered to incorporate real life situations in this modeling study, with zero flux condition assumed to occur at the exit boundary of the domain, i.e....
متن کاملSolute Transport for Pulse Type Input Point Source along Temporally and Spatially Dependent Flow
In the present study, analytical solutions are obtained for two-dimensional advection dispersion equation for conservative solute transport in a semi-infinite heterogeneous porous medium with pulse type input point source of uniform nature. The change in dispersion parameter due to heterogeneity is considered as linear multiple of spatially dependent function and seepage velocity whereas seepag...
متن کامل